• 姓       名:陈海波
  • 职       称:教授
  • 学       位:博士
  • 所在机构:中南大学 数学与统计学院
  • 出生年月:
  • 籍       贯:
  • 研究方向:常微分方程;偏微分方程;数学生态学模型
个人简介 学术成果 发表论文

教育背景

1981年起:

湘潭大学数学专业本科毕业;

湖南大学应用数学专业硕士毕业;

中南大学应用数学专业博士毕业;

工作经历

武汉大学数学专业博士后研究;

牛津大学数学研究所访问学者。

教授课程

常微分方程,微分方程定性理论,稳定性理论,微分方程泛函方法,抽象空间中的微分方程,向量场的分岔理论,极限环论,高等数学

科研项目

在研项目

1. 变分方法与拟线性椭圆型方程解的存在性及性态研究,国家自然科学基金面上项目(11671403),主持

完成项目

1. 变分方法与脉冲微分系统周期解及同宿轨研究,国家自然科学基金面上项目(11271372),主持

2. 变分方法与脉冲微分系统周期解研究,湖南省自然科学基金重点项目(12JJ2004),主持

3. 平面微分系统的中心问题与极限环分支,国家自然科学基金面上项目(10871206),主持

4. 平面微分系统的中心焦点判定与极限环分支,教育部留学回国人员科研启动基金项目,教外司留[2008]0814,主持

5. 具有时滞的离散生态数学模型的建立与定性研究,国家自然科学基金面上项目(19601016),参与

6. 渔业数学生态学模型及其应用,湖南省教委科研基金项目,参与

7. 多项式系统的极限环理论及其应用,中南大学科研课题,主持

8. 平面多项式微分系统赤道的稳定性与极限环分支,湖南省自然科学基金面上项目(05JJ30010),主持

9. 非线性波动方程的长时间行为和近似惯性流形,湖南省自然科学基金面上项目(98JJY2034),参与

论文专著

[129]Xiaonan Liu, Haibo Chen, Belal Almuaalemi. Ground state solutions for p-biharmonic equations, Electronic Journal of Differential Equations, 45, 2017 (2017), 1-9.(SCI)

[128] Sofiane Khoutir, Haibo Chen. Ground state solutions and least energy sign-changing solutions for a class of fourth order Kirchhoff-type equations in . Arab Journal of Mathematical Sciences, 23(1), 2017,94-108.

[127] Liuyang Shao, Haibo Chen. Existence of solutions for the Schr?dinger-Kirchhoff-Poisson systems with a critical nonlinearity. Boundary Value Problems (2016) 2016:210,DOI 10.1186/s13661-016-0718-0(SCI)

[126]Liuyang Shao,Haibo Chen.Multiple solutions for Schrodinfer-Possion systems with sign-changing potential and critical nonlinerity. Electronic Journal of Differential Equations, 276, 2016 (2016),1-8.(SCI)

[125]Hongliang Liu, Haibo Chen, Qizhen Xiao.Positive ground state solutions for a class of Schrodinger–Poisson systems with sign-changing and vanishing potential. Mathematical Methods in the Applied Sciences,26 JUL 2016, DOI: 10.1002/mma.4110(SCI)

[124]Guofeng Che, Haibo Chen. Multiplicity of small negative-energy solutions for a class of semilinear elliptic systems, Boundary Value Problems (2016) 2016:107 DOI 10.1186/s 13661-016-0616-5 (SCI)

[123]Guofeng Che, Haibo Chen. Existence and multiplicity of systems of Kirchhoff-type equations with general potentials. Mathematical Methods in the Applied Sciences, 3(40):2017, 775–785.(SCI)

[122]Hongliang Liu, Haibo Chen, Gangwei Wang. Multiplicity for a 4-sublinear Schrodinger–Poisson system with sign-changing potential via Morse theory. Comptes Rendus Mathematique, 1(354): 2016, 75-80.(SCI)

[121]Hongxia Shi, Haibo Chen. Ground state solutions for resonant cooperative elliptic systems with general superlinear terms. Mediterranean Journal of Mathematics. 13(2016), 2897-2909 (SCI)

[120]Yulin Zhao, Haibo Chen, Qiming Zhang.Infinitely many solutions for fractional differential system via variational method.Journal of Applied Mathematics and Computing,(2016) 50:589–609 DOI 10.1007/s12190-015-0886-6.(EI)

[119]Hongxia Shi, Haibo Chen,Hongliang Liu.Morse theory and local linking for a class of boundary value problems with impulsive effects.Journal of Applied Mathematics and Computing,(2016) 51:353–365 DOI 10.1007/s12190-015-0909-3.(EI)

[118]Sofiane Khoutir, Haibo Chen.Least energy sign-changing solutions for a class of fourth order Kirchhoff-type equations in RN.Journal of Applied Mathematics and Computing,201606,DOI 10.1007/s12190-016-1023-x.(EI)

[117]Sofiane Khoutir, Haibo Chen.Existence of infinitely many high energy solutions for a fractional Schrodinger equation in RN.Applied Mathematics Letters,61(2016),156-162.(SCI)

[116]Hongxia Shi, Haibo Chen. Positive solutions for generalized quasilinear Schrodinger equations with potential vanishing at infinity. Applied Mathematics Letters, 61(2016), 137-142. (SCI)

[115]Liping Xu,Haibo Chen. Sign-changing solutions to Schrodinger-Kirchhoff-type equations with critical exponent. Advances in Difference Equations (2016) 2016:121 DOI 10.1186/s13662-016-0828-0(SCI)

[114]Guofeng Che, Haibo Chen.A Method of L-Quasi-upper and Lower Solutions for Boundary Value Problems of Impulsive Differential Equation in Banach Spaces. Differential Equations and Dynamical Systems,DOI 10.1007/s12591-015-0266-6, 05/01/2016.(SCI)

[113]Junjun Zhou, Haibo Chen,Belal O. M. Almuaalemi. Existence and Multiplicity of Solutions for Some Damped Dirichlet Nonlinear Impulsive Differential Equations. Differential Equations and Dynamical Systems. DOI10.1007/s12591-016-0273-2. 28/01/2016.(SCI)

[112]Haibo Chen, Hongliang Liu, Liping Xu.Existence and multiplicity of solutions for nonlinear Schrodinger-Kirchhoff-type equations.Journal of the Korean Mathematical Society, 53:1 (2016), 201-215.(SCI)

[111]Hongliang Liu, Haibo Chen. Multiple solutions for a nonlinear Schrodinger–Poisson system with sign-changing potential.Computers and Mathematics with Applications, 71, 2016, 1405-1416. (SCI)

[110]Hongxia Shi, Haibo Chen.Generalized quasilinear asymptotically periodic Schrodinger equations with critical growth.Computers and Mathematics with Applications, 71, 2016, 849-858. (SCI)

[109]Yulin Zhao, Haibo Chen, Qiming Zhang. Infinitely many solutions for fractional differential system via variational method. J. Appl. Math. Comput. (2016) 50:589–609, DOI 10.1007/s 12190-015-0886-6.

[108]Hongxia Shi, Haibo Chen. Multiplicity results for a class of boundary value problems with impulsive effects. Mathematische Nachrichten, 289(5–6), 2016,718–726.(SCI)

[107]Hongliang Liu, Haibo Chen,Xiaoxia Yang. Least energy sign-changing solutions for nonlinear Schrodinger equations with indefinite-sign and vanishing potential.Applied Mathematics Letters,53(2016), 100-106.(SCI)

[106]Liping Xu, Haibo Chen. Nontrivial solutions for Kirchhoff-type problems with a parameter. Journal of Mathematical Analysis and Applications, 433:1, 2016,455-472(SCI)

[105]Hongxia Shi, Haibo Chen.Ground state solutions for asymptotically periodic coupled Kirchhoff-type systems with critical growth.Mathematical Methods in the Applied Sciences, 9(39):2016, 2193-2201(SCI)

[104]Hongxia Shi, Haibo Chen, Hongliang Liu.Morse theory and local linking for a class of boundary value problems with impulsive effects.Journal of Applied Mathematics and Computing, DOI 10.1007/s12190-015-0909-3

[103]Jianxin Cao, Haibo Chen, Weifeng Yang.Existence and continuous dependence of mild solutions for fractional neutral abstract evolution equations.Advances in Difference Equations 2015, 2015:6 (15 January 2015)(SCI)

[102]Hongliang Liu, Haibo Chen.Ground-state solution for a class of biharmonic equations including critical exponent. Zeitschrift für angewandte Mathematik und Physik(ZAMP), 66 (2015), 3333–3343.(SCI)

[101]Guofeng Che, Haibo Chen. Nontrivial solutions and least energy nodal solutions for a class of fourth-order elliptic equations.J. Appl. Math. Comput. DOI 10.1007/s12190-015-0956-9. 06/11/2015(EI)

[100]Hongxia Shi, Haibo Chen.Multiple solutions forP-Laplacian boundary-value problems with impulsive effects.Electronic Journal of Differential Equations, 2015 (2015),207,1-9.(SCI)

[99]Hongxia Shi, Haibo Chen.Multiple solutions for fractional Schrodinger equations.Electronic Journal of Differential Equations, 2015 (2015),25,1-11.(SCI)

[98]Liping Xu, Haibo Chen.Multiple solutions for the nonhomogeneous fourth order elliptic equations for Kirchhoff-type. Taiwanese Journal of Mathematics, 19(4), 2015. 1215-1226.(SCI)

[97]Hongliang Liu, Haibo Chen, Yueding Yuan.Multiplicity of nontrivial solutions for a class of nonlinear Kirchhoff-type equations. Boundary Value Problems 2015, 2015:187 doi:10.1186/s13661-015-0452-z.(SCI)

[96]Hongliang Liu, Haibo Chen.Multiple solutions for an indefinite Kirchhoff-type equation with sign-changing potential. Electronic Journal of Differential Equations, 2015 (2015),274,1-9.(SCI)

[95]Liping Xu, Haibo Chen. Multiplicity results for fourth order elliptic equations of Kirchhoff-type. Acta Mathematica Scientia, 35:5,2015, 1067-1076(SCI)

[94]Hongliang Liu, Haibo Chen. Least energy nodal solution for a quasilinear biharmonic equation with critical exponent in RN. Applied Mathematics Letter, 48,2015,85-90.(SCI)

[93]Liping Xu, Haibo Chen. Existence and multiplicity of solutions for nonhomogeneous Klein-Gordon-Maxwell equations, Electron. J. Diff. Equ., 102,2015 (2015), 1-12.

[92]Yulin Zhao, Haibo Chen,Qiming Zhang. Infinitely many solutions for fractional differential equations via variational methods.Journal of Applied Mathematics and Computing. Mar. 29, 2015.DOI 10.1007/s12190-015-0886-6

[91]Yulin Zhao, Haibo Chen, Bin Qin. Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods.Applied Mathematics and Computation, 257, 15 April 2015, 417-427.(SCI)

[90]Yusen Wu, Peiluan Li, Haibo Chen. Calculation of singular point quantities at infinity for a type of polynomial differential systems. Mathematics and Computers in Simulation, 2015:109,153-173(SCI)

[89]Xiaoxia Yang,Haibo Chen.Existence of periodic solutions for a damped vibration problem with (q, p) - Laplacian. Bulletin of the Belgian Mathematical Society Simon Stevin, 21(1),2014,51-66

[88]Junjun Zhou, Haibo Chen, Belal O.M. Almuaalemi. Existence and multiplicity of solutions for some damped Dirichlet nonlinear impulsive differential equations. Differential Equations and Dynamical Systems, 2014

[87]Hongliang Liu, Haibo Chen, Xiaoxia Yang. Multiple solutions for superlinear Schrodinger-Poisson systems with sign-changing potential and nonlinearity. Computers and Mathematics with Applications, 2014: 68(12),1982-1990 (SCI)

[86]Liping Xu, Haibo Chen.Existence and multiplicity of solutions for fourth-order elliptic equations of Kirchhoff type via genus theory. Boundary Value Problems, 2014, 2014:212,1-12(SCI)

[85]Liping Xu, Haibo Chen.Existence of infinitely many solutions for generalized Schr?dinger-Poisson system. Boundary Value Problems, 2014, 2014:196,1-12(SCI)

[84]Liping Xu, Haibo Chen.Multiplicity of small negative-energy solutions for a class of nonlinear Schrodinger–Poisson systems. Applied Mathematics and Computation,243, 2014, 817-824.(SCI)

[83]Yulin Zhao, Haibo Chen and Qiming Zhang. Multiple solutions of three-point boundary value problems for second-order impulsive differential equation at resonance.Boundary Value Problems,2014, 2014:103.(SCI)

[82]Yulin Zhao, Haibo Chen and Bin Qin.Periodic boundary value problems for second-order functional differential equations with impulse.Advances in Difference Equations,2014, 2014:134.(SCI)

[81]Hongxia Shi, Haibo Chen, Qi Zhang.Infinitely many solutions for a p-Laplacian boundary value problem with impulsive effects. Journal of Applied Mathematics and Computing,46(2014),93-106.(EI)

[80]Xiaoxia Yang, Haibo Chen.Existence of periodic solutions for sublinear second order dynamical system with (q, p)-Laplacian. Mathematica Slovaca (63)4(2013),799-816(SCI)

[79]Yulin Zhao, Haibo Chen and Qiming Zhang.Existence and multiplicity of positive solutions for nonhomogeneous boundary value problems with fractional q-derivatives.Boundary Value Problems 2013, 2013:103 (25 April 2013)(SCI)

[78]Liu Yang, Haibo Chen, Liping Luo.Successive iteration and positive solutions for boundary value problem of nonlinear fractional q-difference equation. Journal of Applied Mathematics and Computing (2013)

[77]Juntao Sun, Jifeng Chu, Haibo Chen.Periodic solution generated by impulses for singular differential equations.Journal of Mathematical Analysis and Applications, 404(2), 2013, 562-569. (SCI)

[76]Yulin Zhao,Haibo Chen, Qiming Zhang.Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions.Advances in Difference Equations 2013, 2013:48

[75]Cao, Jianxin; Chen, Haibo. The Iterative Solution of Generalized Sturm-Liouville Boundary Value Problem in Banach Spaces.Funkcialaj Ekvacioj Internacia, 55:3,2012,429-446(SCI)

[74]Yulin Zhao,Guobing Ye,Haibo Chen.Multiple Positive Solutions of a Singular Semipositone Integral Boundary Value Problem for Fractional q-Derivatives Equation.Abstract and Applied Analysis,Volume 2013, Article ID 643571, 12 pages

[73]Yueding Yuan, Haibo Chen, Chaoxiong Du, Yuejin Yuan.The limit cycles of a general Kolmogorov system.Journal of Mathematical Analysis and Applications, 392(2), 2012, 225-237. (SCI)

[72]Yulin Zhao, Haibo Chen, Li Huang. Existence of positive solutions for nonlinear fractional functional differential equation. Computers & Mathematics with Applications, 64(10),2012, 3456-3467.(SCI)

[71]Haibo Chen, Hongwu Tong, Juntao Sun. Periodic solutions of second order differential equations with multiple delays. Advances in Difference Equations 2012, 2012:43, doi: 10.1186/1687-1847-2012-43.

[70]Juntao Sun, Haibo Chen, Jifeng Chu. On periodic Hamiltonian elliptic systems with spectrum point zero. Mathematische Nachrichten,285(17-18), 2012, 2233 – 2251.(SCI)

[69]Yulin Zhao, Haibo Chen, Chengjie Xu; Existence of multiple solutions for three-point boundary-value problems on infinite intervals in Banach spaces. Electronic Journal of Differential Equations,44,2012 (2012),1-11.

[68]Yusen Wu, Peiluan Li, Haibo Chen. Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a cubic Lyapunov system.Communications in Nonlinear Science and Numerical Simulation,17(1), 2012, 292-304.(SCI)

[67]Zhisu Liu, Haibo Chen and Cheng Liu.Positive solutions for singular third-order nonhomogeneous boundary value problems.Journal of Applied Mathematics and Computing, 38(1),2012,161-172.

[66]Juntao Sun, Haibo Chen, Juan J. Nieto.On ground state solutions for some non-autonomous Schr?dinger–Poisson systems.Journal of Differential Equations,252(5), 2012, 3365-3380. (SCI)

[65]Jianxin Cao, Haibo Chen.Impulsive fractional differential equations with nonlinear boundary conditions. Mathematical and Computer Modelling, 55( 3), 2012, 303-311. (SCI)

[64]Jianxin Cao, Haibo Chen.Positive Solution of Singular Fractional Differential Equation in Banach Space.Journal of Applied Mathematics, 2011(SCI)

[63]Xiaoxia Yang,Haibo Chen. Periodic Solutions for Autonomous (q,p)-Laplacian System with Impulsive Effects. Journal of Applied Mathematics,2011, (SCI)

[62]Liu Yang, Haibo Chen. Unique positive solution of boundary value problem for fractional differential equations. Journal of Biomathematics, 26(1), 2011, 43-47.

[61]Liu Yang, Haibo Chen, Juntao Sun.Infinitely many homoclinic solutions for some second order Hamiltonian systems.Nonlinear Analysis: Theory, Methods & Applications, 74(17)2011, 6459-6468. (SCI)

[60]Liu Yang, Haibo Chen.Nonlocal boundary value problem for impulsive differential equations of gractional order. Advance in difference equations: Art No.404917, 2011. (SCI)

[59]Qi Zhang, Yirong Liu, Haibo Chen. On the equivalence of singular point quantities and the integrability of a fine critical singular point.Nonlinear Analysis: Real World Applications,12, 2011, 2794–2801.(SCI)

[58]Liu Yang, Haibo Chen, Xiaoxia Yang.Multiplicity of solutions for fourth-order equation generated by boundary condition.Applied Mathematics Letters, 24(9), 2011, 1599-1603.(SCI)

[57]Juntao Sun, Haibo Chen, Juan J. Nieto.Infinitely many solutions for second-order Hamiltonian system with impulsive effects. Mathematical and Computer Modelling, 54(1-2), 2011, 544-555.

[56]Liu Yang, Haibo Chen. Existence and multiplicity of periodic solutions generated by impulses. Abstract and Applied Analysis, 2011, Article ID 310957, 15 pages.

[55]Chaoxiong Du, Heilong Mi, Haibo Chen.The Bifurcation of limit cycles for a planar seventh order differential system. Journal of System Science and Mathematics Sciences, 30(10),2010,1386-1398.

[54]Jianxin Cao, Haibo Chen. Some results on impulsive boundary value problem for fractional differential inclusions. Electronic Journal of Qualitative Theory of Differential Equations, 11, 2010, 1-24.(SCI)

[53]Jianxin Cao, Haibo Chen,Jin Deng.Positive solutions of the second-order system of differential equations in Banach spaces. J. Appl. Math. & Informatics, 28(5-6), 2010, 1445-1460.

[52]Liu Yang,Haibo Chen. Nonlocal Boundary alue Problem for Impulsive Differential Equations of Fractional Order, Advances in Difference Equations, vol. 2011, Article ID 404917, 16 pages, 2011. doi:10.1155/2011/404917.

[51]Zhisu Liu, Haibo Chen. Variational methods to the second-order impulsive differential equation with Dirichlet boundary value problem, Computers and Mathematics with Applications, 61,2011, 1687-1699.

[50]Juntao Sun, Haibo Chen and Liu Yang.Variational methods to fourth-order impulsive differential equations.Journal of Applied Mathematics and Computing, 35(1-2), 2011, 323-340.(EI收录)

[49]Juntao Sun, Haibo Chen, Juan J. Nieto.Homoclinic orbits for a class of first-order nonperiodic asymptotically quadratic Hamiltonian systems with spectrum point zero.Journal of Mathematical Analysis and Applications,378(1),2011,117-127.(SCI)

[48]Juntao Sun, Haibo Chen, Liu Yang.Positive solutions of asymptotically linear Schrodinger–Poisson systems with radial potential vanishing at infinity. Nonlinear Analysis: Theory, Methods & Applications,74(2), 2011,413-423.(SCI)

[47]Juntao Sun, Haibo Chen, Juan J. Nieto. Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems. Journal of Mathematical Analysis and Applications, 373(1), 2011, 20-29.(SCI)

[46]Zuowei Cai, Lihong Huang, Haibo Chen.Positive periodic solution for a multispecies competition-predator system with Holling III functional response and time delays.Applied Mathematics and Computation, 217(10),2010,4866-4878.(SCI)

[45]Chaoxiong Du, Haibo Chen, Yirong Liu.Center problem and bifurcation behavior for a class of quasi analytic systems.Applied Mathematics and Computation, 217(9), 2011,4665-4675.(SCI)

[44]Juntao Sun, Haibo Chen and Tiejun Zhou. Multiplicity of solutions for a fourth-order impulsive differential equation via variational methods. Bull. Aust. Math. Soc. 82 (2010), 446–458 doi:10.1017/S0004972710001802 (SCI)

[43]Peiluan Li, Haibo Chen, Yusen Wu.Multiple Positive Solutions for an n-Point Nonhomogeneous Boundary Value Problems in Banach Spaces.Results in Mathematics, 58, 2010, 297–316.

[42]Peiluan Li, Haibo Chen, Yusen Wu.Multiple positive solutions of n-point boundary value problems for p-Laplacian impulsive dynamic equations on time scales.Computers & Mathematics with Applications, 60(9), 2010,2572-2582.(SCI)

[41]Chaoxiong Du, Yirong Liu, Haibo Chen. The Bifurcation of limit cycles in Zn-equivariant vector fields. Applied Mathematics and Computation, 217(5), 2010, 2041-2056.(SCI)

[40]Haibo Chen, Juntao Sun. An application of variational method to second-order impulsive differential equation on the half-line. Applied Mathematics and Computation, 217(5), 2010,1863-1869.(SCI)

[39]Liu Yang,Haibo Chen.Unique positive solution for boundary value problem of fractional differential equations. Applied Mathematics Letters, 23(9), 2010, 1095-1098. (SCI)

[38]Juntao Sun, Haibo Chen. Multiplicity of solutions for a class of impulsive differential equations with Dirichlet boundary conditions via variant fountain theorems. Nonlinear Analysis: Real World Applications, 11(5), 2010,4062-4071.(SCI)

[37]Juntao Sun, Haibo Chen, Liu Yang. Existence and multiplicity of solutions for an impulsive differential equation with two parameters via variational method. Nonlinear Analysis: Theory, Methods & Applications, 73(2), 2010, 440-449. (SCI)

[36]Yulin Zhao, Haibo Chen. Existence of multiple positive solutions for singular functional differential equation with sign-changing nonlinearity. Journal of Computational and Applied Mathematics,234(5), 2010,1543-1550.(SCI)

[35]Juntao Sun, Haibo Chen, Juan J. Nieto, Mario Otero-Novoa. Multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects.Nonlinear Analysis: Theory, Methods & Applications, 72(12),2010, 4575-4586.(SCI)

[34]Liu Yang,Haibo Chen.Existence and multiplicity of solutions to even order ordinary differential equations via variational methods. Nonlinear Analysis: Theory, Methods & Applications,72(7-8),2010, 3422-3428.(SCI)

[33]Qinlong Wang, Yirong Liu, Haibo Chen. Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems.Bulletin des Sciences Mathématiques, 134(7),2010,786-798.(SCI)

[32] Juntao Sun, Haibo Chen. Variational method to the impulsive equation with Neumann boundary conditions, Boundary Value Problems, 2009 (2009), Article ID 316812(11 October 2009), 17 pages(SCI)

[31] Yulin Zhao, Haibo Chen. Triple positive solutions for nonlinear boundary value problems in Banach space, Computers & Mathematics with Applications, 58(9), 2009, 1780-1787. (SCI)

[30]Juntao Sun, Haibo Chen. Multiple positive solutions for multi-point boundary value problems with a p-Laplacian on the half-line,Journal of Applied Mathematics and Computing,33(1-2), 2010, 173-191.

[29]Peiluan Li, Haibo Chen and Yusen Wu. Existence of solutions of n -point boundary value problems on the half-line in Banach spaces, Acta Applicandae Mathematicae, 110(2),2010,785-795.

[28]Haihua Wang, Haibo Chen. Existence of positive solutions for a system of second-order m-point BVPs with variable parameters, Journal of Applied Mathematics and Computing, 31(1-2),2009,517–531.

[27]Peiluan Li, Haibo Chen, Qi Zhang. Multiple positive solutions of n-point boundary value problems on the half-line in Banach spaces, Communications in Nonlinear Science and Numerical Simulation, 14(7), 2009, 2909-2915. (SCI)

[26]Haibo Chen, Peiluan Li. Exstence of solutions of three-point boundary value problems in Banach spaces, Mathematical and Computer Modelling, 49(3-4), 2009, 780-788. (SCI)

[25]Haibo Chen, Yirong Liu, Pei Yu. Center and isochronous center at infinity in a class of planar differential systems. Dynamics of Continuous, Discrete and Impulsive Systems, Series B, 15(1), 2008, 57-74. (SCI)

[24]Yulin Zhao, Haibo Chen. Multiplicity of solutions to two-point boundary value problems for second-order impulsive differential equations. Applied Mathematics and Computation,206(2), 2008, 925-931.

[23]Haibo Chen, Peiluan Li. Three-point Boundary value problems for second-order ordinary differential equations in Banach spaces, Computers and Mathematics with Applications,56(7),2008,1852-1860. (SCI)

[22] Haibo Chen and Haihua Wang, Triple positive solutions of boundary value problems for p-Laplacian impulsive dynamic equations on time scales, Mathematical and Computer Modelling,47(9-10)(2008),917-924.(SCI)

[21]Yulin Zhao, Haibo Chen. Existence of multiple positive solutions for m-point boundary value problems in Banach spaces. Journal of Computational and Applied Mathematics, 215(1)(2008),79-90. (SCI)

[20]Yulin Zhao, Haibo Chen. Approximate System for Quadratic Hamiltonian System with Multiple Limits. Journal of Hunan University of Technology(in Chinese), 22(2), 2008, 25-28.

[19] Yulin Zhao, Haibo Chen. The upper bound of the number of limit cycles for a class of non-Hamiltonian integral system. College Mathematics(in Chinese), 24(5),2008,34-37.

[18]Haibo Chen, Haihua Wang, Qi Zhang, Tiejun Zhou. Double positive solutions of boundary value problems for p-Laplacian impulsive functional dynamic equations on time scales. Computers & Mathematics with Applications,53(10),2007,1473-1480.(SCI)

[17] Haibo Chen. Positive solution for nonhomogeneous three-point boundary value problem of second order differential equations. Mathematics and Computer Modelling, 45(2007), 844-852. (SCI)

[16] Haihua Wang, Haibo Chen. Positive solutions of a nonlinear second-order n-point boundary value problem . Applied Mathematics and Computation. 186(2,) 2007, 1129-1136. (SCI)

[15] Haihua Wang, Haibo Chen. Boundary value problem for second-oder impulsive functional differential equations. Applied Mathematics and Computation, 191(2), 2007, 582-591. (SCI)

[14] Yulin Zhao, Haibo Chen. On Qualitative Analysis of Predator-Prey System with Functional Response Function kx~θ/(a+x~θ). Mathematics in Practice and Theory(in Chinese), 37(5),2007, 118-121.

[13] Yulin Zhao, Haibo Chen. Existence and Uniqueness of Limit Cycles of a Predator-Prey System with Functional Response kx~θ. Journal of Biomathematics(in Chinese), 21(4),2006,515-520.

[12]Haibo Chen, Haihua Wang, Global attractivity of the difference equation. Applied Mathematics and Computation, 181(2),2006,1431-1438. (SCI)

[11] Qi Zhang, Yirong Liu and Haibo Chen. Bifurcation at the equator for a class of quintic polynomial differential system. Applied Mathematics and Computation,181(1),2006,747-755. (SCI)

[10] Haihua Wang, Haibo Chen. Existence of Triple Positive Solutions for Second Order Multi-point Boundary Value Problem. Journal of Changsha Communications University(in Chinese), 22(3), 2006, 83-86.

[9]Haibo Chen, Yirong Liu, Xianwu Zeng. Algebraic Recursion Formulas for Quantities of Equator in a Planar Polynomial Differential System. Acta Mathematica Sinica, 48(5), 2005, 963-972.

[8]Haibo Chen, Yirong Liu, Zeng Xianwu. Center conditions and bifurcation of limit cycles at degenerate singular points in a quintic polynomial differential system, Bulletin Des Sciences Mathematiques, 129, 2005, 127-138.(SCI)

[7]Haibo Chen, Yirong Liu. Linear recursion formulas of quantities of singular point and applications, Applied Mathematics and Computation, 148(1)2004, 163-172.(SCI)

[6] Haibo Chen, Yirong Liu. Limit cycles of the equator in a quintic polynomial system. Chinese Annals of Mathematics, 24A:2, 2003, 219-224.

[5]Yirong Liu, Haibo Chen. Stability and bifurcation of limit cycles of the equator in a class of cubic polynomial system. Computers and Mathematics with Applications, 44(2002), 997-1005.(SCI)

[4] Haibo Chen, Yirong Liu. Formulas of singular point quantities and the first 10 saddle quantities for a class of cubic system. Acta Mathematicae Applicatae Sinica, 25(2), 2002, 295-302.

[3] Haibo Chen,Jiaowan Luo. Stability and bifurcation of limit cycles of the equator in a class of septic polynomial systems. Mathematica Applicata(in Chinese), 15(2), 2002, 22-25.

[2] Haibo Chen. The problem of centers of polynomial vector fields. Mathematics Theory with Applications, 22(2),2002, 64-67.

[1]Haibo Chen, Yirong Liu. Limit cycles in a generalized Gause-type predator-prey system. Journal of CSUT, 8(4), 2001, 283-286.(SCI) )

奖励/荣誉

湖南省高等学校优秀教学成果二等奖,排名3

湖南省高等学校优秀教学成果三等奖,排名3

2011年中南大学校级优秀教学成果二等奖,排名1

2012年中南大学优秀研究生(博士生)学术奖一等奖,指导教师

2012年宝钢优秀教师奖

2015年湖南省自然科学奖(排名1)

评为省级青年骨干教师、校级优秀教师、优秀共产党员。